Oxytocin Makes People Trusting, Not Gullible
Moïra Mikolajczak, James J. Gross, Anthony Lane, Olivier Corneille, Philippe de Timary and Olivier Luminet
Psychological Science 2010 21: 1072 originally published online 14 July 2010
DOI: 10.1177/0956797610377343

The online version of this article can be found at:
http://pss.sagepub.com/content/21/8/1072
The neuropeptide oxytocin (OT) plays such a key role in social behavior that it has been referred to as “the love hormone” and “liquid trust” (e.g., Domes, Heinrichs, Michel, Berger, & Herpertz, 2007; Ferguson, Young, & Insel, 2002; Guastella, Mitchell, & Mathews, 2008; Morhenn, Park, Piper, & Zak, 2008; Taylor, 2006; Unkelbach, Guastella, & Forgas, 2008). These nicknames have an element of truth: When OT levels are increased, people do in fact seem to become more altruistic, trusting, and generous (Barraza & Zak, 2009; Baumgartner, Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008; Kosfeld, Heinrichs, Zak, Fischbacher, & Fehr, 2005; Pedersen, Ascher, Monroe, & Prange, 1982; Theodoridou, Rowe, Penton-Voak, & Rogers, 2009; Zak, Stanton, & Ahmadi, 2007).

The effect of OT on prosocial behavior—and on trust in particular—is so strong that it has been suggested that OT may make people indiscriminately prosocial (e.g., trusting to a fault). While the press (e.g., Szalavitz, 2008) and researchers (e.g., Damasio, 2005) alike have worried about its potential misuse by politicians, the armed forces, and marketers, OT retailers have flourished by convincing clients that they can close deals with a few whiffs of OT.

But does OT really increase people’s trust in anybody, or can contextual cues of unreliability override the effects of OT? Animal studies suggest that OT’s social effects—and on trust in particular—is so strong that it has been suggested that OT may make people indiscriminately prosocial (e.g., trusting to a fault). While the press (e.g., Szalavitz, 2008) and researchers (e.g., Damasio, 2005) alike have worried about its potential misuse by politicians, the armed forces, and marketers, OT retailers have flourished by convincing clients that they can close deals with a few whiffs of OT.

In one part of the game, participants were told that they would play 10 rounds with the computer, which would randomly determine the back transfers; in another part, participants were told that they would play online with real people.

Method

Sixty healthy young adult men (mean age = 21.2 years, SD = 2.4) completed measures of demographics, risk taking (Jackson, 1994), self-esteem (Rosenberg, 1979), kindness (Park, Peterson, & Seligman, 2004), agreeableness (Costa & McCrae, 1992), social competence (Petrides, 2009), emotional dispositions (Petrides & Furnham, 2003), and psychological disorders (Derogatis, 1993). Participants were then randomly assigned to receive intranasal OT (n = 30; 32 IU Syntocinon Spray, Novartis, Basel, Switzerland) or intranasal placebo (n = 30). To avoid gender differences in OT response, we recruited only males.

Forty-five minutes after substance inhalation (the time required for OT to be fully active), participants received instructions for the trust game. Each participant assumed the role of investor and could transfer money to a “trustee,” in whose hands the funds would triple. The trustee would then transfer all the money, part of it, or none of it back to the investor. If the investor entrusted the trustee with all of his money, he could maximize his profits if the trustee was reliable and fair. Conversely, he could lose everything if the trustee was not fair. The trust game is perfectly suited to establish the investor’s level of trust (i.e., the higher the trust, the higher the transfer). Each participant played with three different types of trustees: seemingly reliable humans, seemingly unreliable humans, and the computer (i.e., a fully neutral device). By manipulating the partners’ trustworthiness, we sought to determine the extent to which OT impairs sensitivity to potential signs of dishonesty.

In one part of the game, participants were told that they would play 10 rounds with the computer, which would randomly determine the back transfers; in another part, participants were told that they would play online with real people.

Corresponding Author:
Moira Mikolajczak, Department of Psychology, Université catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium
E-mail: moira.mikolajczak@uclouvain.be
Results and Discussion

The OT and control groups did not differ in demographic and individual difference measures (all ps > .25) or in beliefs about their group assignment (p > .25). After removing 1 outlier, we performed a 2 (group: OT or placebo) × 3 (partner type: computer, reliable human, unreliable human) mixed-model analysis on investments, with partner type as a within-subjects factor. Kindness, self-esteem, social competence, emotional dispositions, and psychological disorders were included as covariates because they affected investments (ps ≤ .05). The same pattern of results was obtained with and without inclusion of these covariates. Significant multivariate effects (p ≤ .05) were followed up with Bonferroni-adjusted t tests.

Analyses yielded a main effect of partner type, $F(2, 1051) = 65.44, p \leq .001$; participants made smaller investments, or transfers, with unreliable partners than with the computer, $t(58) = 7.47, p \leq .001$, or reliable partners, $t(58) = 5.38, p \leq .001$. Transfers to reliable and unreliable partners did not differ, $t(58) = 1.38, p = .17$. There was also a main effect of group, $F(1, 1051) = 5.76, p < .018$, with the OT group making larger transfers than the placebo group. Crucially, group interacted with partner type, $F(2, 1051) = 3.29, p = .038$, such that OT completely lost its trust-enhancing effect when the partner was untrustworthy (see Fig. 1; for more detailed descriptive statistics, see Supplementary Table 1 in the Supplemental Material available online).

This study is the first to demonstrate contextually dependent OT effects on prosocial behaviors in humans. We found evidence—consistent with previous studies—that OT increases prosocial behavior, but we further demonstrated that OT facilitates such behavior only in the absence of cues that a social partner may be untrustworthy.

That OT fosters trust, but not gullibility, is crucial: To survive, people must be able to detect situations in which trust may result in aversive outcomes (Greenspan, Loughlin, & Black, 2001; Teoh & Wong, 2002). Indeed, whereas trust contributes to economic and social success (see, e.g., Kramer, 1999), gullibility fosters social maladaptation and exposes one to financial exploitation and even sexual abuse (Greenspan et al., 2001).

This study has several implications. First, oxytocin is not the magical “trust elixir” described in the news, on the Internet, or even by some influential researchers. Second, the fact that we observed a significant effect of OT when the partner was a computer suggests that OT’s effect may be primarily moderated not by the human versus nonhuman nature of the partner, but rather by the perceived risk inherent to the interaction (see Supplementary Discussion in the Supplemental Material for extended discussion).

Acknowledgments

We thank Nathalie Lefèvre, Cécile Husquet, and Noah Forrin for assistance, as well as Markus Heinrichs and Thomas Baumgartner for information and advice.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Funding

The Belgian Fund for Scientific Research (FNRS) supported this research.

Supplemental Material

Additional supporting information may be found at http://pss.sagepub.com/content/by/supplemental-data
References

