Attention Bias Modification in Remitted Depression is Associated with Increased Interest and Leads To Reduced Adverse Impact of Anxiety Symptoms and Negative Cognition

Journal: Clinical Psychological Science

Manuscript ID: CPX-18-0107.R2

Manuscript Type: Empirical Article

Keywords: attention bias modification, network analysis, attentional bias, Depression

Abstract: Using a computational network approach, we reanalyzed data from a randomized controlled-trial of attention bias modification task (ABM) on residual depression symptoms. The main aim was to characterize the symptom-to-symptom changes following ABM. ABM was associated with improvements in interest, which was, in turn, associated with improvements in other depression symptoms. Although there were no changes in the global network strength following ABM, the comparison between symptom change in the ABM and control group suggests that ABM lead to a reduction of the association between anxiety, depressed mood, and guilt. Findings suggest that reduction in depression symptoms following ABM may have been set in motion by increased interest and involvement in everyday activities, leading to a reduction of the adverse impact of anxiety and negative cognition. ABM may be more effective in patients where these symptoms are prominent.
Attention Bias Modification in Remitted Depression is Associated with Increased Interest and Leads To Reduced Adverse Impact of Anxiety Symptoms and Negative Cognition

Brage Kraft
University of Oslo

Rune Jonassen
University of Oslo

Alexandre Heeren
Université Catholique de Louvain

Catherine Harmer
University of Oxford

Tore Stiles
Norwegian University of Science and Technology

Nils Inge Landrø
University of Oslo
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Author Note

Brage Kraft, Department of Psychology, University of Oslo; Alexandre Heeren, Psychological Sciences Research Institute, Université Catholique de Louvain, Institute of Neuroscience, Université Catholique de Louvain; Rune Jonassen, Department of Psychology, University of Oslo, Akershus University Hospital, Division of Psychiatry, Oslo, Norway; Catherine Harmer, Department of Psychiatry, University of Oxford, Department of Psychology, University of Oslo; Tore Stiles, Department of Psychology, Norwegian University of Science and Technology; Nils Inge Landrø, Department of Psychology, University of Oslo, Department of Psychiatry, Diakonhjemmet Hospital.

This work was supported by grants from the Research Council of Norway (229135) to NIL, and The South East Norway Health Authority Research Funding (2015052) to NIL. The Department of Psychology, University of Oslo has also supported the project.

We want to thank the following research assistants: Inger Marie Andreassen, Adrian Dahl Askelund, Dani Beck, Sandra Aakjær Bruun, Jenny Tveit Kojan, Nils Eivind Holth Landrø, Elise Solbu Kleven and Julie Wasmuth. Further, we thank Kari Agnes Myhre and Senior Consultant, Research leader; MD, Phd Erlend Bøen at Diakonhjemmet Hospital, Division of Psychiatry, for help and support during the recruiting period. We also thank our external recruitment sites, Unicare, Coperiosenteret AS, Torgny Syrstad, MD, Synergi Helse AS and Lovisenberg Hospital.

We thank Giulio Costantini and Eiko Fried for initial comments regarding the analysis.

CH has received consultancy fees form Johnson and Johnson Inc., P1vital, and Lundbeck.

NIL has received consultancy fees and travel expenses from Lundbeck.

Correspondence concerning this article should be addressed to Brage Kraft, Department of Psychology, University of Oslo, PB 1094 Blindern, 0317 Oslo, Norway. E-mail: brage.kraft@psykologi.uio.no; bragekb@gmail.com
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Abstract

Using a computational network approach, we reanalyzed data from a randomized controlled-trial of attention bias modification task (ABM) on residual depression symptoms. The main aim was to characterize the symptom-to-symptom changes following ABM. ABM was associated with improvements in interest, which was, in turn, associated with improvements in other depression symptoms. Although there were no changes in the global network strength following ABM, the comparison between symptom change in the ABM and control group suggests that ABM lead to a reduction of the association between anxiety, depressed mood, and guilt. Findings suggest that reduction in depression symptoms following ABM may have been set in motion by increased interest and involvement in everyday activities, leading to a reduction of the adverse impact of anxiety and negative cognition. ABM may be more effective in patients where these symptoms are prominent.

Keywords: attention bias modification, depression, network analysis, attentional bias
Depression is among the most prevalent and severe mental disorders and is related to substantial individual suffering (Cuijpers & Schoevers, 2004; Demyttenaere et al., 2004). Both currently (Gotlib, Krasnoperova, Yue, & Joormann, 2004) and previously depressed patients (Joormann & Gotlib, 2007) show an attentional bias towards negative stimuli. This negative attentional bias can be demonstrated in visual probe tasks, where depressed individuals are faster to respond when probes replace negative stimuli, compared to when probes replace positive stimuli (Peckham, McHugh, & Otto, 2010). This is also the case for never-depressed individuals who are at high risk because of a family history of depression (Joormann, Talbot, & Gotlib, 2007; Kujawa et al., 2011), implying attentional bias as a causal risk factor for depression debut, recurrence and consolidation (Beck & Bredemeier, 2016; Disner, Beevers, Haigh, & Beck, 2011; Mathews & MacLeod, 2005).

Attention bias modification tasks (ABM) aim to reduce attentional bias by automatically directing attention towards more positive stimuli (Hakamata et al., 2010). The sparse studies in depression have shown that ABM has the potential to reduce residual symptoms after depression (Beevers, Clasen, Enock, & Schnyer, 2015; Browning, Holmes, Charles, Cowen, & Harmer, 2012; Wells, Beevers, Id, & Wells, 2010; Yang, Ding, Dai, Peng, & Zhang, 2015). As residual symptoms after a depressive episode are among the strongest predictors for recurrence (Paykel, 2008), ABM might prove effective in preventing relapse. However, as argued in a number of meta-analyses (see for example Cristea, Kok, & Cuijpers, 2015; Mogoase, David, & Koster, 2014), effect sizes are small and definitive conclusions are limited due to small sample size and poor trial methodology employed in many studies. Even so, emotional vulnerability seem to decrease in studies where ABM is followed by a successful shift in attention bias (Grafton et al., 2017, but see also Cristea, Kok, & Cuijpers, 2017).
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Recently, in a large preregistered randomized clinical trial of effects of ABM on residual symptoms in depression (Jonassen et al., 2018), a two-week ABM program resulted in a positive change in attentional bias and a small but statistically significant effect on depression symptoms as measured by the clinician-rated interview Hamilton Rating Scale for Depression (HRSD; Hamilton, 1960). Importantly, the degree of symptom improvement increased with degree of positive bias modification within the ABM group, in line with the mechanism emphasized by Grafton et al. (2017).

To increase the effect of ABM, researchers are urged to explore novel ways to conceptualize and modify attentional bias in depression (Koster & Bernstein, 2015; Mogg, Waters, & Bradley, 2017). Another approach is to reconsider the model of depression vulnerability and how outcome of ABM is assessed. Clinical effects of ABM for depression has commonly been evaluated based on sum scores on depression rating scales, such as the HRSD or the Beck Depression Inventory-II (Beck, Steer, & Brown, 1996). These have high construct validity and are extensively used in the clinic, but aggregating symptoms into a sum can conceal potentially important insights (Fried & Nesse, 2015). Individual depression symptoms are differentially related to risk factors, impaired psychological functioning, biomarkers, and antidepressant efficacy (for a review, see Fried, Nesse, Zivin, Guille, & Sen, 2014). It is likely that ABM is associated with changes in specific depression symptoms, but that global assessments of symptom change masks this effect. Obtaining this knowledge may inform further development of ABM. Along these lines, the present study reexamines data demonstrating the effect of ABM in residual depression (Jonassen et al., 2018) on the symptom level, using recent innovations in theoretical and computational network analysis (Borsboom, 2017; Borsboom & Cramer, 2013; Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012).
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Over the last two years, the network approach has been increasingly used to understand mental disorders as systems of interacting symptoms (Hofmann & Curtiss, 2018; Hofmann, Curtiss, & McNally, 2016; McNally, 2016). According to this approach, each depressive symptom is not reflective of a “depressive disorder”, but possess independent causal powers that influence other symptoms (e.g., insomnia causes fatigue); symptoms are not merely passive indicators of an underlying disease (Borsboom & Cramer, 2013). Thus, a depressive episode emerges because of the pairwise associations between depression symptoms. These associations can be visualized in a network model, where symptoms are represented by nodes and associations are represented by edges between the nodes (Borsboom, 2017).

Network analysis can determine which symptoms are the most central (i.e., influential) based on the amount of influence that flows from one symptom to another (Borgatti, 2005; Valente, 2012). Central symptoms are those that have many strong relations with other symptoms, and the presence of a central symptom easily spread to other symptoms, potentially producing a cascade of activation (Borsboom & Cramer, 2013; Valente, 2012). In depression, low mood and loss of interest appear to be the most central symptoms (Fried et al., 2017), along with anxiety (Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016). Networks with many strong connections between symptoms (dense networks) are more likely pathogenic than networks characterized by weaker connections – i.e., more “vulnerable” (Borsboom, 2017; Borsboom & Cramer, 2013; Fried et al., 2017; Heeren & McNally, 2018).

Individuals with depression show a more densely connected network compared to healthy subjects (Pe et al., 2015), and this predicts difficulty recovering from a depressive episode (van Borkulo et al., 2015, but see also Schweren, van Borkulo, Fried, & Goodyer, 2017). Simulation studies show that in dense networks, only a minimal of worsening in a central symptom may trigger a downstream cascade of symptoms. This might lead to a “vicious cycle” of negative
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Cognition and symptoms (Teasdale, 1988; Wichers, 2014), with a depressed state as the result (Cramer et al., 2016).

We used network analysis to characterize the symptom changes following ABM. We believe that traditional approaches for conceptualizing symptom changes (i.e., sum scores of depression scales; Fried et al., 2017) could be occluding symptom changes following ABM. Our main aim is thus to provide a comprehensive exploration of ABM’s impact on residual depression, and evaluate whether ABM changes specific symptoms or other aspects of the symptom network. First, we estimated the initial symptom network before ABM, and compared symptom centrality with previous network studies on depression to assess the generalizability of the current sample. Second, we estimated networks based on symptom changes from pre to post ABM, and examined whether specific symptoms are improved or the symptom cascade is changed (i.e., the dynamic changes in symptom-symptom relations over time). We examined whether ABM is associated with improvements in individual symptoms, and decreases the connectivity between symptoms. Finally, we examined symptom networks post ABM, and hypothesized that ABM weakens connections among symptoms, that is, ABM reduces the overall network connectivity.

Method

Participants

We obtained data from a randomized double-blind placebo-controlled trial of ABM on residual depression symptoms among patients with remitted depression. The study was preregistered at ClinicalTrials.gov (NCT02648165). For details regarding design, methods, and results, see Jonassen et al. (2018). ABM training led to significantly greater decrease in clinician rated, but not subjective rated, symptoms of depression as compared to the control condition.
The sample included 322 participants recruited mainly from an outpatient clinic in the Department of Psychiatry, Diakonhjemmet Hospital in Oslo. Participants were also recruited from other clinical sites, by local advertisements, and via social media. Inclusion criteria were the presence of a remitted major depressive disorder, age between 18-65 years, and fluency in Norwegian. Exclusion criteria were the presence of current or former neurological disorder, substance use disorder, attention-deficit disorder, head trauma, psychosis, or bipolar disorder. These criteria were assessed using the Mini-International Neuropsychiatric Interview (Sheehan et al., 1998). A total of 302 patients were included per protocol. Participants provided written informed consent, and the study was approved by the Regional Ethical Committee for Medical and Health Research for Southern Norway (2014/217/REK sør-øst D).

Measures and Materials

Symptoms. Depression symptoms were measured using HRSD (Hamilton, 1960), which is an observer-rated interview with 17 items. The internal reliability of HRSD was acceptable in the current sample ($\alpha = .77$).

Attention bias modification task. The ABM was a computerized, validated visual dot-probe procedure (Browning et al., 2012), presented on laptop computers (14" HP Elitebook 840, 1600x900, 8GB, Intel Core i5-4310U). Paired images of faces (the stimuli) were presented followed by one or two dots (a probe), which appeared behind one of the stimuli. Participants were required to press one of two buttons as quickly as possible to indicate the number of dots in the probe. Stimuli were pictures of emotional faces (Karolinska Directed Emotional Faces, Lundqvist, Flykt, & Öhman, 1998) of three valences: positive, neutral, or negative (angry and fearful). The task comprised 96 trials with equal numbers of the three stimulus pair types. There were equal numbers of trials in which the stimuli were randomly presented for 500 or 1000 ms before the probe was displayed. Stimuli from two valences were displayed in each trial of the task.
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

in one of the following pairing types: positive-neutral, positive-negative, and negative-neutral.
Probes were located behind positive (valid) emotional stimuli in 87% of the trials in the training
condition. Thus, when completing training, participants should learn to deploy their attention
towards positive stimuli, and in this way develop a relatively more positive attentional bias. The
control condition was identical in every respect, other than the location of the probe, which was
located behind the positive (valid) stimuli in only 50% of the trials.

Procedure

Participants were explained that the study aimed at examining “attention focus, how this
changes over time, and how this is related to mood and depression symptoms” (the specific
rationale underlying ABM was not explained). After providing written consent, participants were
randomly allocated to either training or control condition by an independent lab technician (not
involved in the day to day collection of data) who prepared laptop computers to deliver either
training or control treatment according to a randomization list in a 1:1 ratio. A trained
administrator, who was blind to condition allocation, assessed depression symptoms and
demonstrated ABM. Participants were then instructed to do the task at home twice a day for two
weeks (28 sessions in total), before returning for a second assessment of depression symptoms.

Network Analysis

Network estimation. We used a Graphical Gaussian Model (GGM) to estimate the
networks. In the presented networks, nodes represent depression symptoms and edges represent
conditional independence relationships between nodes when controlling for the effects of all
other nodes (Epskamp, Borsboom, & Fried, 2017). It is common to regularize GGMs via the
graphical LASSO (least absolute shrinkage and selection operator). The graphical LASSO
estimates a maximum likelihood solution in which the likelihood is penalized for the sum of
absolute parameter estimates (Epskamp & Fried, 2018; Friedman, Hastie, & Tibshirani, 2008).
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

First, it computes regularized partial correlations between pairs of nodes, thereby limiting the sum of absolute partial correlation coefficients. This eliminates spurious associations (edges) attributable to the influence of other nodes in the network. Second, it shrinks trivially small associations to zero, thereby removing potentially “false positive” edges from the graph and producing a sparse graph comprising only the strongest edges. We used the R package \texttt{qgraph} (Epskamp et al., 2012), that automatically implements the graphical LASSO regularization, in combination with an extended Bayesian Information Criterion (EBIC) model selection (Foygel & Drton, 2011). In this approach, 100 different network models are estimated with different degrees of sparsity. Then, the model with the lowest EBIC value is selected, given a certain value of the hyperparameter gamma (γ); this procedure strikes a balance between including false-positive edges and removing true edges. The hyperparameter γ is usually set between zero and 0.5 (Epskamp et al., 2017). As the value of γ nears 0.5, the EBIC will favor a simpler model that contains fewer edges. As the value of γ nears zero, the EBIC will favor a model with a greater number of edges. Given the exploratory nature of the study, we set γ to zero to maximize the sensitivity.

A baseline network was estimated for the whole sample, where edges represent the partial correlations between each of the 17 HRSD items before ABM. This network highlights possible pathways between depression symptoms – in other words, the symptomatological “landscape” which ABM in some way must operate in. Node placement was determined by Fruchterman and Reingold’s (1991) algorithm, whereby nodes nearer to the center of the graph tend to have the strongest connections with other nodes. A thicker edge denotes a larger association. Green edges represent positive partial correlations, whereas red ones represent negative partial correlations.

We estimated two networks based on symptom change scores from baseline to post ABM (post ABM minus baseline). A positive symptom score indicates an improvement in symptom
severity from pre to post, and a negative score indicates a worsening in symptom severity from pre to post. These networks give a visual presentation of how changes in one symptom relates to changes in other symptoms. First, we estimated a symptom change network for the whole sample, including a node representing ABM condition (control = 0, training = 1). This network indicates whether ABM is related to changes in specific symptoms. Second, we estimated symptom change networks for each group (training vs. control) separately, indicating whether ABM induces a changed symptom cascade from baseline to post ABM. Node placement in these training and control networks were determined by the node layout from the baseline network, to ease comparison.

Finally, we estimated networks separately for each group (training vs. control), were nodes represented symptom scores post ABM. Node positioning in these networks were also according to the baseline network layout. We compared these networks in global strength, symptom centrality, and specific edge differences.

Centrality indices. For each network, we computed centrality indices to quantify the importance of each node (Opsahl, Agneessens, & Skvoretz, 2010). We focused on “strength” centrality, defined as the sum of the weights of the edges attached to that node, because previous network research in psychopathology has indicated that this is the most stable and reliable centrality metric (e.g., Beard et al., 2016; Bernstein, Heeren, & McNally, 2017). Higher values reflect greater centrality in the network. We created centrality plots that depict these values as z-scores for ease of interpretation.

We evaluated the stability of the centrality indices by using the R package bootnet (Epskamp et al., 2017) by implementing a subset bootstrap procedure (Costenbader & Valente, 2003). The procedure is described in the Supplementary Materials.
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Networks comparisons. Network differences were evaluated based on global strength, defined as the weighted sum of the absolute connections within a network (Barrat, Barthélemy, Pastor-Satorras, & Vespignani, 2004). Higher values reflect greater interconnectivity among nodes. We used the NetworkComparisonTest (NCT) to test for differences between the training and control network in global strength. The NCT is a two-tailed permutation-based test in which the difference between two groups is calculated repeatedly (10,000 times) for randomly regrouped individuals (van Borkulo, 2016). This produces a distribution of values under the null hypothesis (i.e., assuming equality between the groups) that enables one to test whether the observed difference in global network strength differs significantly ($p < .05$) between groups.

To clarify potential significant differences between groups, we also tested whether edge weights were significantly different between groups for each edge of the networks. To do so, we relied on permutation-based tests using NCT (van Borkulo, 2016), and applied the Holm-Bonferroni correction to control for the large number of tests (i.e., minimizing the risk of Type 1-error).

Results

Participants

The majority of the participants were women (70%). Mean age for the whole sample was 40.9 ($SD = 13.2$), and participants had on average experienced 4.1 ($SD = 5$) depressive episodes. Mean HRSD score at baseline was 8.8 ($SD = 5.6$). Twenty-seven percent of the participants used a serotonin specific/serotonin-norepinephrine reuptake inhibitor anti-depressant. Demographic and clinical characteristics of the participants are presented in Table 1. There were no significant differences between the training and control group, except that HDRS scores from baseline to post ABM improved by 1.1 points ($SD = 5.3$, corresponding to 12 % improvement) in the
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

training group and worsened by 0.5 points ($SD = 4.6$, corresponding to 6 % worsening) in the control group (Cohen’s $d = 0.32$), as reported by Jonassen et al. (2018).

Baseline network

The baseline network is presented in *Figure S1* (Supplementary Materials available online). Depressed mood, interest, guilt, and anxiety have many strong edges and are centrally located in the network. Insomnia symptoms and other vegetative symptoms (e.g., weight loss, agitation, psychomotor retardation) are located in the periphery, and primarily connected to the rest of the network through anxiety. Centrality indices (*Figure S2*, Supplementary Materials available online) indicate that anxiety (somatic [1.84]), depressed mood (1.70), guilt (0.81), and interest (0.70) have high strength centrality, meaning that they are strongly connected to the rest of the network.

Symptom change networks

Figure 1 presents the symptom change network for the whole sample, and strength centrality for each node. The ABM node represents ABM condition (0 = control, 1 = training). The other nodes represent change scores from baseline to post ABM (positive score = improvement, negative score = worsening). This network indicates that ABM condition covaries with improvement in interest, that is, when ABM condition changes from control to training, interest improves. Improvement in interest is in turn related to improvement in other symptoms. Strength centrality index indicate that ABM is a relatively unimportant node (-0.60) compared to most other nodes in the network, but, strikingly, its connection is to what appears as the second most central node in the network (interest [2.12]).

We conducted additional network analyses (i.e., post-hoc) to examine whether changes in attentional bias scores were associated with changes in symptoms (see *Supplementary Materials Figure S9-14*). Overall, results showed that there were edges appearing between, on the one hand,
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

changes in positive vs. negative attentional bias and, on the other hand, anxiety (somatic) and insight.

Figure 2 denotes symptoms change networks and strength centrality for each node in the training and control group respectively. Depressive mood, low interest, and anxiety are closely related in both networks. Global network strength was significantly weaker for the training network (0.09) than in the control network (2.28, \(p < .05 \)). Anxiety (somatic) is the most central symptom in the control network (2.32), and markedly more central than in the training network (0.24). Permutation-based tests of edge differences revealed significant differences between the two networks. Indeed, five of the edges present in the control network were absent in the training network. Specifically, interest was connected to guilt (\(p = .01 \)), anxiety (somatic) was connected with suicidal thoughts (\(p < .01 \)) and somatic symptoms (\(p < .01 \)), agitation was connected to loss of insight (\(p < .05 \)), and retardation with loss of libido (\(p < .05 \)). Guilt was also connected to anxiety (somatic) at borderline significance level (\(p = .05 \)). No other edge was statistically different between the networks.

Post ABM networks

Symptom networks and strength centrality for training and control groups post ABM are shown in Figure 3. There was no statistical significant difference in network density (\(p = .62 \)) between the training network (Global strength = 5.58) and the control network (Global strength = 5.06). Centrality indices were highly similar. Permutation-based tests revealed several significant edge differences between the training and the control network. In the control network, guilt was more strongly connected to anxiety (somatic; \(p < .05 \)) and retardation (\(p < .05 \)), and depressed mood was more strongly connected to anxiety (psychic; \(p < .05 \)). The training network had two edges present which were not present in the control network: interest was connected to gastro-
intestinal symptoms \((p < .05) \), and retardation was connected to late insomnia \((p < .05) \). No other differences in edges were statistical significant.

Stability of the centrality indices

Stability analyses of the strength centrality index for all networks are depicted in Figure S3-S8 (Supplementary Materials). The average correlation remained high after 50% of the cases were dropped, indicating stability in the centrality measure estimates (Epskamp et al., 2017).

Discussion

This is the first study examining a randomized clinical trial using network analysis, and the first network analysis on the ABM's impacts. Depressed mood, interest, guilt, and anxiety were the most central symptoms before ABM, supporting the generalizability of the current sample (e.g., Boschloo, van Borkulo, Borsboom, & Schoevers, 2016; Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 2014; Fried et al., 2016). ABM was associated with improvement in interest and involvement in everyday activities, which, in turn, was associated with improvement in other depression symptoms. Post hoc analyses suggested that changes in attentional bias for positive vs. negative stimuli was associated with changes in anxiety (somatic) and insight. Moreover, results suggested that ABM changes the symptom cascade: the training network was less densely connected, and connections between interest, anxiety, guilt, suicidal ideation, and somatic symptoms were absent, compared to the control network. However, ABM did not change the global network strength, albeit connections between anxiety, depressed mood, and guilt were reduced in the training network.

The aim of the present ABM procedure was to render patients more focused on positive social stimuli. It has been hypothesized that this mechanism may set in motion an implicit relearning of a range of emotional associations, where ambiguous events or stimuli are perceived
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

more positively, and thus increase patients’ motivation to engage in their social environment (Harmer, Duman, & Cowen, 2017). Thus, as participants’ attention is nudged towards positive aspects of everyday situations (e.g., a smiling face, an encouraging comment), it may increase the probability for prosocial interaction, which, in turn, may increase the frequency of positive feedback and ultimately reinforces approach behavior towards social interaction (for a review, see Fox, 2005). Although this interpretation remains speculative, the association between ABM and interest may reflect the endpoint of this mechanism.

On the other hand, post-hoc analyses showed that changes in attentional bias (as measured by the dot-probe probe task) were not associated with interest. However, like most extant procedures for assessing attentional bias, the dot-probe task exhibits poor psychometric properties (for a review, see McNally, 2018). Recently developed experimental paradigms enabling optimal assessment of attentional bias might be more appropriate in future research agendas (e.g., Price et al., 2015; Sanchez-Lopez, Vanderhasselt, Allaert, Baeken, & De Raedt, 2018; Zvielli, Bernstein, & Koster, 2014).

An alternative interpretation is that interest is a moderator of the ABM effect. This hypothesis is in keeping with Shiroma, Thuras, Johns, and Lim (2014) who found that antidepressant response and remission was predicted by early changes in emotional processing of faces when considered along with perceived social support. Thus, helping patients to approach social situations during training may increase the effect of ABM.

Guilt has been found to be the most important symptom in explaining differences in overall network connectivity between persisters and remitters (van Borkulo et al., 2015). We found that ABM reduces connectivity between guilt and other depression symptoms. The guilt item in HRSD refers to “self-reproach and ideas of guilt or rumination over past errors”, and is thematically similar to the brooding facet of rumination (Treynor, Gonzalez, & Nolen-Hoeksema,
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

2003). Rumination has been identified as a critical mechanism of depression (Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008). It is related to negative emotional processing (Gotlib & Joormann, 2010) and decreased cognitive control (Yang, Cao, Shields, Teng, & Liu, 2017). Specifically, brooding is characterized by attention being more firmly held on negative compared to positive information (Southworth, Grafton, MacLeod, & Watkins, 2017). Moreover, rumination has been found to mediate the effect of ABM on depression symptoms (Yang et al., 2015). Thus, the decoupling of guilt may represent a reduced impact of rumination in the context of other depression symptoms.

The present study provides an important basis to formulate new hypotheses on how ABM may alter depression symptoms. Our findings suggest that ABM reduces residual depression by increasing interest and motivation for social interaction, which in turn buffers against anxiety symptoms and negative cognitions. Whether these changes are of a sufficient magnitude to prevent relapse of a depressive episode needs to be examined in follow-up studies.

ABM resulted in few changes related to depressed mood, compared to changes involving anxiety symptoms. This may be explained by the fact that attention was trained towards positive stimuli in the context of threatening or anxiety-related stimuli (i.e., angry and fearful faces). This observation is further corroborated by the complementary post hoc analyses of changes in attentional bias scores, showing that fostering attentional bias for positive stimuli in the presence of negative stimuli was associated with a reduction of anxiety symptoms. Training in a context of negative mood-related stimuli (e.g., sad faces) may result in more pronounced changes involving depressed mood. Since depressed mood is the most central symptom, it is possible that this can increase the overall effect of ABM.

On the other hand, post hoc analyses, showing that changes in anxiety were related to changes in attentional bias towards angry/fearful faces, also point to anxiety as a potential
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

mediator of ABM’s beneficial impacts. Thus, a reduction in the orientation towards threatening
stimuli may have improved anxiety symptoms, which, in turn, may have lead to improvements in
other depression symptoms. Unfortunately, the exact sequence of change in the symptom cascade
cannot be inferred from the present study and future experiments are clearly needed to do so.

The network approach offers a promising conceptual framework to personalized treatment
(Fried et al., 2017). The present study invites the hypothesis that ABM may be more effective in
patients where interest, anxiety symptoms and negative cognitions dominate the symptom
network, and less effective in patients where other symptoms are central (e.g., sleep problems and
vegetative symptoms). Estimating individual symptom networks based on intensive time-series
data can provide a more fine grained evaluation of ABM effects in individuals (see for example
Fisher, Reeves, Lawyer, Medaglia, & Rubel, 2017). Based on these estimations, one can identify
symptom profiles for which ABM might be the most effective treatment approach.

Including non-symptom variables that are assumed to play a causal role in depression in
the network models has the potential to bring more knowledge of how and for whom and ABM
can alter depression course (Jones, Heeren, & McNally, 2017). Relevant variables here are
rumination and attentional control, because these are regarded as core causal mechanisms of
depression (De Raedt & Koster, 2010; Nolen-Hoeksema et al., 2008), and are related to
attentional bias change (Arditte & Joormann, 2014; Basanovic, Notebaert, Grafton, Hirsch, &
Clarke, 2017) and symptom relief (Yang et al., 2015) after ABM.

The present study has several limitations. First, to the best of our knowledge, this is the
first study considering an experimental condition within a network of continuous measures. Thus,
the statistical adequacy of this approach has yet to be established. Emerging computational tools
enabling the combination of categorical and continuous variables within a network, such as
mixed graphical network modelling (Haslbeck, 2015), may therefore be more appropriate for
future research in the field. Second, the edges were calculated with cross-sectional data, precluding strong inference regarding cause-effect relationships among the variables (Maurage, Heeren, & Pesenti, 2013). Cross-sectional edges represent both within- and between-subjects effects that cannot be disentangled, and the network trajectory over time may vary across individuals. Third, symptom change networks were estimated based on individual difference scores, making the assumption that there would be no symptom changes in the absence of intervention. An alternative model would be to assume that symptom scores at post ABM is a linear function of the symptom scores at baseline (i.e., residual change scores; for a discussion, see Gollwitzer, Christ, & Lemmer, 2014). However, to best capture the within- and between-person temporal dynamics of individual networks, one would need to apply graphical vector autoregressive modeling approaches on intensive time-series data from individual participants (e.g., Wichers, Groot, & Psychosystems, 2016; Wild et al., 2010). In this way, one can track change in symptoms and attentional bias over time to optimally model the continuous dynamics of the interplay between the different changes occurring during ABM. Fourth, although a sample size of 302 patients is usually not regarded as a small sample for a clinical study in depression, network models estimate a very large number of parameters, and cross-sample validations in larger samples are thus required to draw firm conclusions. On the other hand, results from the non-parametric bootstrap approach reinforce the generalizability of the present findings in similar samples. Fifth, as highlighted by Jonassen et al. (2018), uncertainty still abounds regarding the best way to interpret the relevance of the rather small improvement in HRSD score in the present sample (that is, among patients who are not currently fulfilling diagnostic criteria for depression). We cannot exclude that the present effects on symptom networks would have been different with larger effects size. Finally, this study cannot determine whether the observed network changes are specific to ABM, or could be the result of any form of intervention. Other forms of treatments...
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

(i.e., psychological, pharmacological) may yield very different impacts on the symptoms network. Moreover, each patient’s particular network structure may point to different treatments, or a combination of treatments. Future research is thus clearly needed to clarify these issues.

In conclusion, by applying a computational network approach, we found that ABM improved depression by reducing the adverse impact of anxiety symptoms and negative cognitions on other depression symptoms. This change was associated with increased interest and involvement in everyday activities.

Author contributions
BK developed the study concept. BK and RJ collected the data. BK performed the data analysis and interpretation under the supervision of AH. BK and AH drafted the paper, and RJ, CH, TS and NIL provided critical revisions. All authors approved the final version of the paper for submission.
References

ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

http://mc.manuscriptcentral.com/cpx
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Fried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. (2014). Depression is more than the sum score of its parts: individual DSM symptoms have different risk factors. *Psychological medicine, 44*(10), 2067-2076. doi:10.1017/S0033291713002900

http://mc.manuscriptcentral.com/cpx
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Kujawa, A. J., Torpey, D., Kim, J., Hajcak, G., Rose, S., Gotlib, I. H., & Klein, D. N. (2011). Attentional biases for emotional faces in young children of mothers with chronic or...
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

http://mc.manuscriptcentral.com/cpx
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

http://mc.manuscriptcentral.com/cpx
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

http://mc.manuscriptcentral.com/cpx
ABM IN RESIDUAL DEPRESSION: A NETWORK ANALYSIS

Table 1

Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control ($n = 149$)</th>
<th>Training ($n = 153$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, $M (SD)$</td>
<td>41.5 (13.6)</td>
<td>40.2 (12.7)</td>
</tr>
<tr>
<td>Sex (females), n</td>
<td>103</td>
<td>109</td>
</tr>
<tr>
<td>Educational level (ISCED), $M (SD)$</td>
<td>5.9 (1.2)</td>
<td>6.0 (1.1)</td>
</tr>
<tr>
<td>Use of SSRI/SNRI medication, n</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>Rumination score (RRS), $M (SD)$</td>
<td>49.5 (12.2)</td>
<td>51.4 (12.1)</td>
</tr>
<tr>
<td>Stroop inhibition-switching, seconds to complete, $M (SD)$</td>
<td>59.9 (15.5)</td>
<td>60.1 (14.4)</td>
</tr>
<tr>
<td>Number of depressive episodes, $M (SD)$</td>
<td>4.1 (4.6)</td>
<td>4.1 (4.9)</td>
</tr>
<tr>
<td>Comorbidity rate</td>
<td>61%</td>
<td>62%</td>
</tr>
<tr>
<td>HRSD total score, $M (SD)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline</td>
<td>8.3 (5.1)</td>
<td>9.2 (6.0)</td>
</tr>
<tr>
<td>post</td>
<td>8.8 (5.9)</td>
<td>8.3 (6.0)</td>
</tr>
<tr>
<td>pre-post change</td>
<td>-0.5 (4.6)</td>
<td>1.1 (5.3) *</td>
</tr>
</tbody>
</table>

Note. SSRI/SNRI = serotonin specific/serotonin-norepinephrine reuptake inhibitor; HRSD = Hamilton Rating Scale for Depression; MDD = major depressive disorder; ISCED = International Standard Classification of Education; RRS = Ruminative Responses Scale; * statistical significant difference ($p < 0.01$) versus control group. All other differences (t-tests and chi-square tests) were not statistical significant.
Figure 1. Symptom change network and strength centrality for the whole sample. ABM = ABM condition (control = 0, training = 1). Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure 2. Symptom change networks and strength centrality for the training group (left) and the control group (right). Nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure 3. Post ABM symptom networks and strength centrality for the training group (left) and the control group (right). Nodes represent HRSD item scores post ABM (post minus baseline).

Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Supplementary Materials

Stability of centrality indices. We evaluated the stability of the centrality indices by using the R package `bootnet` (Epskamp et al., 2017) by implementing a subset bootstrap procedure (Costenbader & Valente, 2003). To do so, we repeatedly correlated centrality metrics of the original dataset with centrality metrics calculated from a subsample of participants missing via person-dropping bootstraps as implemented. If correlation values decline substantially as participants are removed, then this centrality index would be considered as less stable. We set the bootstraps to 1,000 and plotted the centrality stability correlation coefficient (CS-coefficient) to quantify the effects of this person-dropping procedure. The CS-coefficient represents the maximum proportion of participants that can be dropped while maintaining 95% probability that the correlation between centrality metrics from the full data set and the subset data are at least .70. A minimum CS-coefficient of .25 is recommended for interpreting centrality indices (Epskamp et al., 2017).

Figure S1. Baseline symptom network and strength centrality indices for the whole sample.

Nodes represent HRSD scores at baseline. Label descriptions: DEPR = depressed mood; GUIL = self-deprecation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S2. Centrality indices for baseline symptom network. Label descriptions:

DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss.
Figure S3. Stability analysis (person-drop) for the baseline symptom network.
Figure S4. Stability analysis (person-drop) for the symptom change network.
Figure S5. Stability analysis (person-drop) for the symptom change network in the control group.
Figure S6. Stability analysis (person-drop) for the symptom change network in the training group.
Figure S7. Stability analysis (person-drop) for the post ABM network in the training group.
Figure S8. Stability analysis (person-drop) for the post ABM network in the control group.
Measurement of attentional bias

Attentional bias was measured at baseline and after two weeks of ABM using a standard visual probe procedure (MacLeod, Rutherford, Campbell, Ebsworthy, & Holker, 2002) consisting of 96 trials, with the same trial types as used in the ABM procedure. Novel facial stimuli were used in the assessment tasks. We calculated a total attentional bias score, and three valence-specific attentional bias scores based on the difference in reaction between trials in which the probe replaced the relatively more 1) negative face vs. the more positive face, 2) neutral face vs. the more positive face, 3) negative face vs. the more neutral face.

Associations between changes in specific attentional bias measures and symptom changes

We conducted additional analyses to explore the specific contribution of attentional bias (AB) changes to symptom changes. First, we examined the contribution of total AB change on symptom changes (Figure S9). Second, we examined each valence-specific AB index separately (Figure S10-12). Third, to control for the general covariance among AB measures (i.e., general reaction time pre-post changes), we included all three AB change indices together (Figure S13). Finally, in an effort to delineate to what extent AB changes specifically resulting from the ABM intervention interplay with symptom changes, we also examined the role of valence-specific AB changes in the ABM training group only (Figure S14). Overall, the results suggest that only attentional bias for positive vs. negative was related to changes in symptom from pre to post ABM. However, when considering the ABM group only (Figure S14), there were no edges appearing between attentional bias changes and symptoms. However, the small sample size ($n = 153$) greatly reduces sensitivity to detect edges.
Figure S9. Symptom change network for the whole sample. ABtotal = changes in attentional bias (total) from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S10. Symptom change network for the whole sample. pos-neg = changes in attentional bias for positive vs. negative stimuli from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S11. Symptom change network for the whole sample. pos-neut = changes in attentional bias for positive vs. neutral stimuli from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S12. Symptom change network for the whole sample. neut-neg = changes in attentional bias for neutral vs. negative stimuli from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S13. Symptom change network for the whole sample with three attentional bias change measures. pos-neg/pos-neut/neut-neg = changes in attentional bias for positive vs. negative/neutral or neutral vs. negative, stimuli from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).
Figure S14. Symptom change network in the ABM group ($n = 153$) with three attentional bias change measures. pos-neg/pos-neut/neut-neg = changes in attentional bias for positive vs. negative/neutral or neutral vs. negative, stimuli from pre to post ABM. Symptom nodes represent symptom severity changes on each HRSD item from baseline to post ABM (post minus baseline). Label descriptions: DEPR = depressed mood; GUIL = self-depreciation and guilt feelings; SUIC = suicidal impulses; INS1 = early insomnia; INS2 = middle insomnia; INS3 = late insomnia; INTE = work and interests; RETA = psychomotor retardation; AGIT = psychomotor agitation; ANXP = anxiety (psychic); ANXS = anxiety (somatic); GAST = gastro-intestinal symptoms; SOMA = somatic symptoms; SEX = sexual interest; HYPO = hypochondriasis; INSI = loss of insight; WEIG = weight loss. Associations are indicated by edge thickness between nodes (thicker edge = stronger association).