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The aim of this fMRI study was to investigate the cerebral crossmodal interactions between human faces and
voices during a gender categorization task.
Twelve healthy male participants took part to the study. They were scanned in 4 runs that contained 3
conditions consisting in the presentation of faces, voices or congruent face–voice pairs. The task consisted in
categorizing each trial (visual, auditory or associations) according to its gender (male or female).
The subtraction between the bimodal condition and the sum of the unimodal ones showed that categorizing
face/voice associations according to their gender produced unimodal activations of the visual (right calcarine
sulcus) and auditory regions (bilateral superior temporal gyri), and specific supramodal activations of the left
superior parietal gyrus and the right inferior frontal gyrus. Moreover, psychophysiological interaction
analyses (PPI) revealed that both unimodal regions were inter-connected and connected to the prefrontal
gyrus and the putamen, and that the left parietal gyrus had an enhanced connectivity with a parieto-premotor
circuit involved in the crossmodal control of attention.
This fMRI study showed that the crossmodal auditory–visual categorization of human gender is sustained by a
network of cerebral regions highly similar to those observed in our previous studies examining the
crossmodal interactions involved in face/voice recognition (Joassin et al., in press). This suggests that the
crossmodal processing of human stimuli requires the activation of a network of cortical regions, including
both unimodal visual and auditory regions and supramodal parietal and frontal regions involved in the
integration of both faces and voices and in the crossmodal attentional processes, and activated independently
from the task to perform or the cognitive level of processing.
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Introduction

In daily life, our social interactions are guided by our ability to
integrate distinct sensory inputs into a coherent multimodal repre-
sentation of our interlocutors. For instance, we are able to integrate
the auditory information of what is said and the visual information of
who is saying it, so that we can attribute a particular speech to a
particular person (Kerlin et al., 2010) and thus take part to a
conversation. Numerous studies have examined the cerebral corre-
lates of the auditory–visual speech perception (Calvert et al., 2000;
Von Kriegstein et al., 2008; Stevenson et al., 2010), underlining the
role of the right superior temporal sulcus (STS) in such processes.

Nevertheless, crossmodal interactions occur not only during
speech perception but also during the memory processes allowing
the identification of familiar people (Campanella and Belin, 2007). For
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encoding, Sheffert and Olson (2004) have shown that the learning of
voice identities was easier when the voices to learn were associated
with a face, revealing crossmodal connections similar to those
observed in audiovisual speech processing. For recognition, we have
recently shown that the recognition of previously learned face–voice
associations, compared to the recognition of faces or voices presented
alone, activated a cerebral network including unimodal face and voice
areas (respectively the right Face Fusiform Area, FFA, Kanwisher et al.,
1997; and the right STS, Belin et al., 2004), but also regions whose
activation was only observed in the bimodal condition, such as the
right hippocampus and the left angular gyrus (Joassin et al., in press).

There are two main hypotheses that have emerged to explain the
crossmodal cerebral integration process. The first one postulates
direct links between the unimodal regions processing the distinct
sensory stimuli (Von Kriegstein et al., 2005, 2006). For instance, the
authors showed that the right FFA had an enhanced connectivity with
the right STS during speaker recognition, suggesting that multimodal
person recognition does not necessarily engage supramodal cortical
substrates but can result from the direct sharing of information
between the unimodal auditory and visual regions (Von Kriegstein
processing of human gender from faces and voices:
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and Giraud, 2006). One possible neural mechanism for such direct
links between unimodal regions could be the synchronization of the
oscillatory activities of assemblies of neurons, especially in the
gamma-band frequency range (N30 Hz, for a review, see Senkowski
et al., 2008).

On the other hand, the alternative hypothesis proposes that the
crossmodal integration of faces and voices relies on the activation of a
neural network including supramodal convergence regions (Driver
and Spence, 2000; Bushara et al., 2003). Our previous experiments
support this second hypothesis as they revealed a specific activation
of supramodal regions such as the right hippocampus and the left
inferior parietal regions during the bimodal recognition of previously
learned face–name (Campanella et al., 2001; Joassin et al., 2004a) and
face–voice associations (Joassin et al., 2004b; in press). This last
region, as a part of the associative cortex, is known to be involved in
the binding of distinct sensory features (Damasio, 1989; Booth et al.,
2002, 2003). Bernstein et al. (2008), using Event-Related Potentials
(ERP), observed a specific cerebral activity of the left angular gyrus
during audiovisual speech perception, suggesting that this region
plays a role in the multimodal integration of visual and auditory
speech perception. The precise role of this region in face–voice
integration could be related to the multimodal control of attention.
Indeed, in our own experiment, a psychophysiological interaction
analysis (PPI, Friston, 2004) revealed that the left angular gyrus had
an enhanced connectivity with the cerebellum and motor and pre-
motor regions including the supplementary motor area and the
middle and superior frontal gyri (Joassin et al., in press). This parieto-
premotor cortical network is important for the control of attention
(Driver & Spence, 1998) and has been reported in several studies
using crossmodal stimuli (O'Leary et al., 1997; Bushara et al., 1999,
Shomstein & Yantis, 2004). It is thus possible that the parieto-
premotor network observed in the present study acts to simulta-
neously direct attention to targets from distinct sensory modalities
(Lewis et al., 2000).

Nevertheless, the results of our previous experiments raised
several questions, notably about the specificity of the neural network
involved in the multimodal recognition of familiar people. The
classical cognitive models of face identification have postulated that
recognition, i.e. the access to the biographical information and the
name of a familiar person, is independent from the processing of the
other facial features such as the ethnicity, the age or the gender (Bruce
and Young, 1986; Burton et al., 1990). However, several recent studies
have challenged this idea and proposed that gender and identity are
processed by a single route. Ganel and Goshen-Gottstein (2002)
showed that participants could not selectively attend to either sex or
identity without being influenced by the other feature, suggesting
that both information are processed by a single route. Moreover,
Smith et al. (2007) have recently shown that auditory and visual
information interact during face gender processing. In their experi-
ment, participants had to categorize androgynous faces according to
their gender. These faces were coupled with pure tones in the male or
female fundamental-speaking-frequency range. They found that faces
were judged as male faces when coupled with a pure male tone while
they were judged as female ones when coupled with a pure female
tone.

The aim of the present experiment was thus to investigate the
crossmodal audiovisual interactions during gender processing with
real faces and voices, in a more ecological approach of face–voice
integration processes. We used an experimental paradigm similar to
those used in our previous studies (Campanella et al., 2001; Joassin
et al., 2004a; 2004b; 2007: in press), enabling the direct comparison
between a bimodal condition (FV) in which both faces and voices
were presented synchronously and two unimodal conditions in which
faces and voices were presented separately (F and V). This paradigm
allowed us to perform the main contrast [FV−(F+V)] in order to
isolate the specific activations elicited by the integration of faces and
Please cite this article as: Joassin, F., et al., The neural network sustaining
An fMRI study, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.08.
voices during gender categorization. This method uses a super-
additive criterion to detect these specific activations, requiring
multisensory responses larger than the sum of the unisensory
responses (Calvert et al., 2001; Beauchamp, 2005). This criterion has
often been considered as overly strict in the sense that it can introduce
type II errors (false negative), due to the fact that, in a single voxel, the
activity of super- and sub-additive neurons is measured (Laurienti
et al., 2005). Nevertheless, as the activations observed in our previous
experiments have been obtained by this way (Campanella et al., 2001;
Joassin et al., 2004a; 2004b; 2007; in press), we decided to continue to
apply the same super-additive criterion. In the same way, we used
static faces identical to those used in our previous experiments
(Joassin et al., 2004b; in press) in order to keep the same general
methods and to be able to compare the results of these distinct
experiments between each other.

We predicted that if gender and identification processing share a
single cognitive route, audiovisual gender categorization should
activate the same cerebral network than the recognition of face–
voice associations, i.e. a network of cerebral regions composed of the
unimodal face and voice areas and supramodal integration regions
including left parietal and prefrontal regions.
Methods

Participants

Twelve healthy undergraduate participants performed this fMRI
experiment (7 females, mean age: 25.75, SD: 5.01). All were right-
handed, French native speakers, had a normal-to-corrected vision and
a normal audition, and gave their written informed consent. The
experimental protocol was approved by the Biomedical Ethical
Committee of the Catholic University of Louvain.
Stimuli

Twelve face–voice associations (6 males) were used in the
experiment. Each face–voice association was composed of a static
picture of a face (black and white photo, front view, neutral expression,
picked from the Stirling Face Database: http://pics.psych.stir.ac.uk) and
a voice recorded in our laboratory and saying the Frenchword «bonjour»
with a neutral prosody. These voices were selected from a validated
battery of vocal prosodies recorded in our laboratory (Maurage et al.,
2007a). We used a word rather than a simple syllable to increase the
ecological value of the face–voice pairs. All visual stimuli were
controlled for contrast and brightness and had an approximative size
of 350×350 pixels. All auditory stimuli (presented in Mono, 44100 Hz,
32 bit) were controlled for duration (mean duration of 700 msec) and
normalized for amplitude (in dB).
Procedure

Three conditions were presented during the fMRI sessions, and
Blood Oxygenation Level-Dependent (BOLD) signal changes were
measured while participants had to categorize faces (F), voices (V)
and face–voice associations (FV) according to their gender. Partici-
pants had to judge as quickly as possible the sex (male or female) of
each trial by pressing one of two buttons of a response pad with 2
fingers of the right hand.

Each participant underwent 4 block-designed acquisition runs.
Each run comprised 6 experimental blocks of 30 sec (3 conditions
repeated once) interleaved with 15-sec fixation periods (white cross
on a black background). Each block was composed of 12 trials and
each trial was composed of a fixation cross (300 msec), followed by
the stimulus for 700 msec and an empty interval of 1500 msec.
the crossmodal processing of human gender from faces and voices:
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Fig. 1. a) fMRI design: each run consisted in 6 alternances of a 15-sec fixation period
(white cross on black background) and a 30-sec activation period. Each activation
period corresponded to a different condition (F, V, FV), presented twice in a pseudo-
random order. Participants were presented with 12 trials in each condition. Each trial
comprised a fixation cross for 300 ms, a stimulus — faces (F), voices (V), or face/voice
associations (FV) — for 700 ms and a black intertrial interval for 1500 ms.

3F. Joassin et al. / NeuroImage xxx (2010) xxx–xxx
Apparatus and experimental set-up

Stimulus presentation and response recording were controlled
with ePrime (Schneider et al., 2002). Back-projected images were
viewed through a tilted mirror (Silent VisionTM System, Avotec, Inc.,
bhttp://www.avotec.orgN) mounted on the head coil. Auditory stimuli
were delivered through headphones and the sound volume was
adjusted for each participant so as to be clearly audible above the
scanner noise.

Imaging procedure

Functional images were acquired with a 3.0 T magnetic resonance
imager and an 8-channel phased array head coil (Achieva, Philips
Medical Systems) as a series of blood-oxygen-sensitive T2*-weighted
echo-planar image volumes (GRE-EPI). Acquisition parameters were as
follows: TE=32 ms, TR=2500 ms, flip angle=90°, field of
view=220×220 mm, slice thickness=3.5 mm with no interslice gap,
and SENSE factor (parallel imaging)=2.5. Each image volume com-
prised 36 axial slices acquired in an ascending interleaved sequence.
Each functional run comprised 108 volumes, 36 corresponding to the
fixation periods and the remaining 72 corresponding to the experi-
mental blocks (24 volumes per condition per run). High-resolution
anatomical images were also acquired for each participant using a T1-
weighted 3D turbo fast field echo sequence with an inversion recovery
prepulse (150 contiguous axial slices of 1 mm, TE=4.6 ms, TR=9.1 ms,
flip angle=8°, FOV=220×197 mm, voxel size=0.81×0.95×1 mm3,
and SENSE factor=1.4). Headmovement was limited by foam padding
within the head coil and a restraining band across the forehead.

fMRI data analysis

Data were processed and analyzed using Statistical Parametric
Mapping (SPM2, Welcome Department of Cognitive Neurology,
London, UK, bhttp://www.fil.ion.ac.uk/spmN), implemented in a
Matlab 6.5.0 environment (The Mathworks, Inc.). Functional images
were (1) corrected for slice acquisition delays, (2) realigned to the
first scan of the first run (closest to the anatomical scan) to correct for
within- and between-run motion, (3) coregistered with the anatom-
ical scan, (4) normalized to the MNI template using an affine fourth
degree ß-spline interpolation transformation and a voxel size of
2×2×2 mm3 after the skull and bones had been removedwith amask
based on the individual anatomical images, and (5) spatially
smoothed using a 10-mm FWHM Gaussian kernel.

Condition-related changes in regional brain activity were estimat-
ed for each participant by a general linear model in which the
responses evoked by each condition of interest were modeled by a
standard hemodynamic response function. The contrasts of interest
were computed at the individual level to identify the cerebral regions
significantly activated by voices ([V-fix]), faces ([F-fix]) and face–
voice associations ([FV-fix]) relative to the fixation periods used as a
general baseline. The contrast [FV−(V+F)] was computed to isolate
the cerebral regions involved in the associative processes between
faces and voices.

Significant cerebral activations were then examined at the group
level in random-effect analyses using one-sample t-tests, with
statistical threshold set to pb .05 corrected for multiple comparisons
using cluster size and extending to at least 10 contiguous voxels. For
the cerebral regions for which we had an a-priori hypothesis, the
statistical threshold was set at pb .001 uncorrected.

We explored the connectivity of the regions activated in the
contrast [VF−(V+F)] by computing several psychophysiological
interaction analyses (PPI, Friston et al., 1997; Friston, 2004). Each PPI
analysis employed 3 regressors: one regressor representing the
deconvolved activation time course in a given volume of interest
(the physiological variable), one regressor representing the psycho-
Please cite this article as: Joassin, F., et al., The neural network sustaining
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logical variable of interest, and a third regressor representing their
cross-product (the psychophysiological interaction term). Each
analysis focused on one particular region observed in the group
analysis. For each participant, we performed a small volume
correction (a sphere of 5 mm centered on the maximum peak of
activity of each region in the group analysis) before extracting the
deconvolved time course of activity in a ROI (a 5-mm radius sphere
centered at the voxels displaying maximum peak activity in the group
analysis). The time course of activity was corrected for the effect of
interest. We then calculated the product of this activation time course
with a condition-specific regressor probing the integration of faces
and voices [VF−(V+F)] to create the psychophysiological interac-
tion terms. PPI analyses were carried out for each ROI in each subject,
and then entered into a random effects group analysis (uncorrected
threshold at pb0.001, as in Ethofer et al., 2006).
Results

Behavioral data

Reaction times
The mean reaction times of the visual, auditory and audiovisual

conditions were respectively 588.1 ms (SD: 87.4), 708.6 ms (SD: 121.5)
and 551 ms (SD: 85.7, Fig. 1).

An ANOVA with the modality (audiovisual, auditory and visual) as
within-subjects factorswas performed on the reaction times. It revealed
significant main effects of the modality (F(2,22)=24.478, pb .0001).
Subsequent one-tailed paired Student t-tests, using a Bonferoni
correction formultiple comparisons showed that the bimodal condition
was performed faster than the auditory (t(11)=−5,3, pb .001) and the
visual (t(11)=−2,6, pb .03) conditions. The visual condition was also
performed faster than the auditory condition (t(11)=−4,9, pb .001)
(Fig. 2).
Percentages of correct responses
The mean percentages of correct answers for the visual, auditory

and audiovisual conditions were respectively 97.4% (SD: 2.2), 98.4%
(SD: 1.3) and 98.2% (SD: 1.2).
the crossmodal processing of human gender from faces and voices:
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Table 2 t2:1

Brain regions showing significant activation for face–voice associations (a) compared to
baseline (fix), and for subtractions between face–voice associations and unimodal faces
and voices (b).

t2:2
t2:3Brain regions x y z L/R k t-statistic

t2:4a FV−fix
t2:5Middle temporal gyrus 58 −22 −2 R 4411 5.51
t2:6Putamen −22 8 −2 L 502 5.45
t2:7Inferior occipital gyrus 44 −82 −8 R 8351 5.11
t2:8Superior temporal gyrus −52 −38 18 L 6485 5.18
t2:9Supramarginal gyrus −6 −42 24 L 5.06
t2:10Inferior parietal gyrus 34 −52 46 R 148 4.27
t2:11Precuneus −54 10 38 L 72 3.87
t2:12b FV−(F+V)
t2:13Calcarine sulcus 12 −92 −8 R 5188 5.96
t2:14Fusiform gyrus −42 −46 −22 L 5.86
t2:15Superior temporal gyrus 66 −14 4 R 1295 5.59
t2:16Superior temporal gyrus −56 −38 8 L 1342 4.70
t2:17Superior parietal gyrus −38 −54 58 L 242 4.31
t2:18Frontal inferior gyrus 36 24 26 R 249 4.29
t2:19Middle occipital gyrus −32 −76 40 L 122 4.22

x, y, z are stereotactic coordinates of peak-height voxels. L=left hemisphere, R=right
hemisphere. k=clusters size. Threshold set at pb .05 corrected for multiple
comparisons using cluster size. t2:20
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The same ANOVA was carried out but failed to reveal any
significant effect of the modality (F(1,11)=1.47, ns).

To summarize, the analysis of the behavioral data showed that the
face–voice associations produced a clear crossmodal facilitation effect
as they were judged significantly faster than the faces and the voice
presented alone. This effect was not observed for the performances
but it is probably due to a ceiling effect, all the percentages of correct
responses being above 97% (Table 1).

Brain imaging results

Gender categorization of the unimodal stimuli
Judging the sex of human faces ([F-fix]) activated the bilateral

fusiform gyri, the right inferior frontal gyrus, the left calcarine sulcus,
the left thalamus, the left and right inferior parietal gyri and the left
putamen (Table 2a).

Judging the sex of human voices ([V-fix]) activated the left and
right superior temporal gyri, the right inferior frontal gyrus and the
bilateral regions of the cerebellum (Table 2b).

Gender categorization of the associations
Judging the sex of face–voice associations ([FV-fix]) activated the

left and right superior and middle temporal gyri, including the left
supramarginal and angular gyri, the right inferior occipital gyrus, the
left putamen, the left precuneus and the right inferior parietal gyrus
(Table 2a).
Table 1
Brain regions showing significant activation compared to baseline (fix) for faces (a) and
voices (b).

Brain regions x y z L/R k t-statistic

a F-fix
Fusiform gyrus −38 −50 −22 L 8877 5.69
Fusiform gyrus 40 −56 −20 R
Inferior frontal gyrus 42 22 24 R 134 4.75
Calcarine sulcus −18 −78 4 L 96 4.34
Thalamus −14 −14 10 L 209 4.15
Inferior parietal gyrus −32 −46 54 L 197 4.13
Inferior parietal gyrus 30 −52 52 R 110 4.10
Putamen −20 8 8 L 92 3.89

b V-fix
Superior temporal gyrus −48 −28 0 L 2996 5.41
Superior temporal gyrus 42 −28 12 R 3414 5.39
Inferior frontal gyrus 52 16 30 R 175 4.29
Cerebellum 50 −60 −32 R 1090 4.98

x, y, z are stereotactic coordinates of peak-height voxels. L=left hemisphere, R=right
hemisphere. k=clusters size. Threshold set at pb .05 corrected for multiple
comparisons using cluster size.

Please cite this article as: Joassin, F., et al., The neural network sustaining
An fMRI study, NeuroImage (2010), doi:10.1016/j.neuroimage.2010.08.
Subtractions between the unimodal and bimodal conditions
The main contrasts of this experiment consisted in subtracting the

cerebral activities elicited by the gender categorization of unimodal
visual and auditory stimuli from the cerebral activities elicited by the
gender categorization of audiovisual stimuli, in order to isolate the
specific activations involved in the integration of visual and auditory
information during gender processing.

The contrast [FV−(F+V)] revealed an extensive activation of the
visual and auditory regions including respectively the right calcarine
sulcus and the left fusiform and middle occipital gyri, and the left and
right superior temporal gyri (Fig. 3). We also observed specific
integrative activations in the left superior parietal gyrus including the
angular gyrus and the right inferior frontal gyrus (Table 2b and Fig. 4).

Functional connectivity analyses
The psychophysiological interactions analyses were performed to

examine the functional connectivity of the cerebral regions observed
in the subtraction. It showed that the left inferior parietal gyrus had an
enhanced connectivity with the right fusiform gyrus, the left
Fig. 3. Brain regions activated in the contrast [FV−(V+F)]. Upper part: statistical
parametric maps superimposed on MRI surface renders (left and right views); lower
part: activation changes for each condition in the right calcarine sulcus (left histogram)
and the right STS (right histogram). pb .05 corrected for multiple comparisons at cluster
size. V=voices, F=faces, VF=face/voice associations.

the crossmodal processing of human gender from faces and voices:
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supplementary motor area and the right cerebellum (Table 3a). The
right STS had an enhanced connectivity with the left auditory STS, the
left visual fusiform gyrus and the left and right putamen (Table 3b).
The right calcarine sulcus had an enhanced connectivity with the right
STS and the left putamen (Table 3c). Finally, the right inferior frontal
gyrus had an enhanced connectivity with the right supramarginal
gyrus, the left inferior occipital gyrus and the left and right STS
(Table 3d).

Discussion

This experiment was aimed at examining the specific cerebral
activations elicited by the gender categorization of face–voice
associations, by comparing them with the cerebral activations
produced by the gender processing of unimodal faces and voices.

The analysis of the behavioral data clearly showed a crossmodal
facilitation effect in the case of the face–voice associations. The
congruent simultaneous presentation of faces and voices helped the
participants to process the gender, as these associations were
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Table 3
Brain regions showing an enhanced connectivity with the regions activated in the
contrast [FV−(F+V)].

Brain regions x y z L/R k t-statistic

a Left inferior parietal gyrus
Supplementary motor area −8 20 52 L 29 3.68*
Fusiform gyrus 44 −50 26 R 102 3.67
Cerebellum 46 −72 −20 R 20 3.26*

b Right STS
Superior temporal gyrus −44 −28 18 L 616 4.35
Fusiform gyrus −34 −48 −24 L 81 4.25
Putamen 22 2 12 R 70 4.02
Putamen −22 8 4 L 91 3.95

c Right calcarine sulcus
Superior temporal gyrus 44 −18 6 R 91 4.21
Putamen −22 6 −4 L 76 4.47

d Right inferior frontal gyrus
Supramarginal gyrus 52 −40 28 R 119 4.46
Superior temporal gyrus −52 −16 8 L 159 4.16
Superior temporal gyrus 50 −12 2 R 27 3.79*
Inferior occipital gyrus −38 −80 −2 L 1 3.14*

x, y, z are stereotactic coordinates of peak-height voxels. L=left hemisphere, R=right
hemisphere. k=clusters size. Threshold set at pb .05 corrected for multiple
comparisons using cluster size. *=Threshold set at pb .001 uncorrected.
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categorized as male or female significantly faster than the faces and
the voices presented alone. This facilitation was not observed on the
percentages of correct responses, probably due to a ceiling effect on
this measure. In our previous experiments, in which we tested the
recognition (i.e. the access to the identity) of face–voice associations,
we observed that voices were more difficult to recognize than faces
and that their simultaneous presentation hampered rather than
facilitated recognition (Joassin et al., 2004b; in press). Several factors
are known to influence the behavioral crossmodal effects, such as the
spatio-temporal proximity (Meredith and Stein, 1986; Robertson and
Schweinberger, 2010) or the semantic congruency (Calvert et al.,
2001). On the basis of our previous results, we proposed that the
perceptive complexity of the stimuli could be a supplementary factor
that could determine the potential gain of bimodal stimulations
(Joassin et al., 2008). Nevertheless, it seems that the differences of
perceptual complexity (or of expertise) between faces and voices are
not the only factor influencing the behavioral crossmodal effects, as in
the present case, although the voices were categorized more slowly
than the faces, their simultaneous presentation fastened the
responses. The level of processing (low such as gender perception,
or high such as access to the identity) seems thus to play also an
important role in the way in which faces and voices interact.

These crossmodal interactions were examined by a contrast
consisting of subtracting the two unimodal conditions from the
bimodal one. This contrast showed that the crossmodal processing of
faces and voices was sustained by a neural network composed of the
unimodal visual and auditory regions but also of two regions, the left
superior parietal cortex and the right inferior frontal gyrus, whose
activations was specific to the bimodal condition. It is important to
note that this network is highly similar to the network of cerebral
regions observed in our previous experiment testing the crossmodal
recognition of face–voice associations (Joassin et al., in press). In this
experiment, the subtraction between unimodal and bimodal condi-
tions also revealed an activation of the unimodal visual and auditory
regions and of the left angular gyrus. It seems thus that the
involvement of this network does not depend on the level of
processing of faces and voices or the task to perform, but is rather
specific to the human stimuli.

The activation of the unimodal regions during bimodal stimula-
tions has already been showed (Ghazanfar et al., 2005; Calvert et al.,
1999) and it has been hypothesized that direct connections between
the unimodal regions could be sufficient to ensure the crossmodal
the crossmodal processing of human gender from faces and voices:
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integration (Von Kriegstein et al., 2005). Nevertheless, the face–voice
associations elicited a specific activation of the left superior parietal
gyrus (Fig. 5). The activation of this particular region has already been
observed in several of our previous experiments (Campanella et al.,
2001; Joassin et al., 2004a; 2004b; in press). This region is known to be
a part of the associative cortex and receives multiple inputs from
modality specific sensory regions (Damasio, 1989; Rämä and
Courtney, 2005; Niznikiewicz et al., 2000; Bernstein et al., 2008).
More specifically, it could be involved in processes of divided
attention, allowing to direct attention simultaneously to targets
from distinct sensory modalities (Lewis et al., 2000).

The PPI analysis centered on the left parietal cortex showed that
this region had an enhanced connectivity with the cerebellum and the
supplementary motor area. This cerebello-parieto-motor network is
important in the crossmodal control of attention (Bushara et al., 1999;
Driver & Spence, 2000; Shomstein & Yantis, 2004), and it could sustain
the integration of faces and voices by allowing an optimal dispatching
of the attentional resources between the visual and the auditory
modalities. The behavioral data reinforce this interpretation as they
showed a clear crossmodal facilitation effect for face–voice pairs. The
categorization was thus based on the processing of both stimuli,
which needed the attentional resources to be dispatched between
both sensory modalities.

The PPI analyses also showed that the unimodal visual and auditory
regions were inter-connected, but had also an enhanced connectivity
with several other cerebral regions. At first, the left putamen, as a part of
the striatum, is known to play the role of a subcortical integration relay
allowing to access and regulate multimodal information by means of
dopaminergic channels (Haruno & Kawato, 2006). Secondly, we
observed that the unimodal regions were also connected to the right
inferior frontal gyrus (Brodmann area 44). This region was activated in
both unimodal conditions and is known to receive inputs from face
(Rolls, 2000; Leube et al., 2001) and voice sensitive areas (Hesling et al.,
2005; Rämä and Courtney, 2005). While it has been suggested that its
activation could reflect some memory encoding processes of new faces
(Leube et al., 2001), the right BA44 was also found to be specifically
involved in the processing of F0modulation, themain acoustic correlate
of prosody (Hesling et al., 2005). These differential interpretations
suggest that the right BA44 is a heterogeneous region that could be
segregated in different parts sustaining distinct cognitive processes. Its
more central activation in the bimodal condition reinforces this idea.
Indeed, the activation of this region has already been observed in
auditory–visual integration experiments (Taylor et al., 2006) and its role
in the integration of faces andvoices could be related to the processing of
the semantic congruency (Hein et al., 2007). These authors, using fMRI,
investigated the cerebral regions involved in the integration of
congruent/incongruent familiar animal sounds and pictures and in the
integration of unfamiliar arbitrary associations between sounds and
Fig. 5. Illustration of the activations of the left parietal gyrus observed by Camp
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object images. They found that processing both familiar incongruent
associations andunfamiliar visuo-auditory associations elicited a specific
activation of the right inferior frontal cortex. This activation was
interpreted as reflecting a sensibility of this region to semantic
congruency but also an involvement in the learning of novel visuo-
auditory associations, as suggested by Gonzalo et al. (2000). Supporting
this interpretation, McNamara et al. (2008) showed that the right BA44
was activated by the learning of new associations between an arbitrary
sound and a gesture. Further experiments, investigating the encoding of
such face–voice associations would be helpful to better understand the
role of the frontal regions in the crossmodalprocessingof human stimuli.

The study of the crossmodal processes between sensorymodalities
is particularly important for a better understanding of the neural
networks operating in the healthy brain, but is also important to
better understand the neuro-functional impairments in several
psychopathological and developmental disorders. For instance, we
have recently shown that chronic alcoholism is associated with a
specific impairment of the visuo-auditory recognition of emotions
(Maurage et al., 2007b), and that it is linked to a hypo activation of the
prefrontal regions (Maurage et al., 2008).

Moreover, it appears that the impairments in the recognition of the
emotions might be due to distinct neuro-functional impairments such
as a deficit of the connectivity between several brain regions in autism
(the amygdala and the associative temporal and prefrontal gryi, Monk
et al., 2010), or a hypo activation of the visual regions in other
pathological conditions such as schizophrenia (Seiferth et al., 2009). It
seems thus that a common symptom — the impairment of the
processing of emotions — might be due to different neuro-functional
deficits. Exploring the multimodal integration in the growing brain is
also particularly important, as it seems that difficulties in information
integration may lead to some developmental disorders, such as
autism (Melillo and Leisman, 2009) or the Pervasive Developmental
Disorders (PDD, Magnée et al., 2008).These authors observed a
specific decrease of the electrical cerebral activity when PDD patients
were confronted to emotional face/voice pairs. It suggests that the
processing difficulties of emotional information during the develop-
ment could be linked to abnormal patterns of the multimodal cerebral
activity. These studies focused on the processing of emotions and it
will be interesting to further explore the impairments of the
multimodal processing of faces and voices in psychopathology, with
the hypothesis of an impairment of the multimodal processing of the
human stimuli at other cognitive levels (perceptual processing,
gender, recognition, Norton et al., 2009). This new approach could
lead to multimodal therapy that would include a combination of
somatosensory, cognitive, behavioral, and biochemical interventions
(Melillo and Leisman, 2009).

A possible limitation of the present study lies in the fact that we
used static faces. Indeed, Schweinberger and his collaborators have
anella et al. (2001), Joassin et al. (in press) and in the present experiment.

the crossmodal processing of human gender from faces and voices:
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recently shown in two studies that dynamic visual information plays
an important role in person recognition. In a first experiment, they
showed that (1) the recognition of familiar voices was easier when
the voices were combined with corresponding synchronously
articulating faces, compared to static faces, and (2) that combining a
voice with a non-corresponding face (i.e. of a different identity)
hampered voice recognition, but only when the face was dynamic
(Schweinberger et al., 2007). Moreover, in a more recent study,
Robertson and Schweinberger (2010) showed that there is a precise
temporal window for the audiovisual face–voice integration in the
recognition of speaker identity. Indeed, voice recognition was
significantly easier when the corresponding articulating face was
presented in approximate synchrony with the voice, the largest
benefit being observed when the voice was presented with a delay of
100 msec after the onset of the face. However, even if the use of
dynamic stimuli should be envisaged in our further studies, the fact
that we observed a clear behavioral crossmodal facilitation and some
specific activations in the bimodal condition ensured that both faces
and voices were explicitly processed and that participants took
benefit from the bimodal situations.

Further studies should also take benefit from new experimental
paradigms and techniques to test the crossmodal gender processing in
complex situations in which faces and/or voices are difficult to
process. Using morphing techniques (Campanella et al., 2002;
Bruckert et al., 2010) would allow us to create ambiguous face–
voice pairs and to test, in a controlled experimental manipulation, the
respective influence of faces and voices in the crossmodal processing
of gender. Such experiments would be highly relevant for the study of
the crossmodal interactions between faces and voices in the growing
brain. While faces evolve in a continuous way during the develop-
ment, voices change brutally in pitch and fundamental frequency at
puberty (Harries et al., 1997).We can thus assume that faces and
voices do not participate to social cognition with an identical weight
during childhood, adolescence and adulthood.

Conclusions

In conclusion, the auditory–visual integration of human faces and
voices during the multimodal processing of the gender was associated
with the activation of a specific network of cortical and subcortical
regions. This network included several regions devoted to the
different cognitive processing implied in the gender categorization
task — the unimodal visual and auditory regions processing the
perceived faces and voices and inter-connected via a subcortical relay
located in the striatum, the left superior parietal gyrus, part of a larger
parieto-motor network dispatching the attentional resources to the
visual and auditory modalities, and the right inferior frontal gyrus
sustaining the integration of the semantically congruent information
into a coherent multimodal representation.

The similarity between the present results and the activations
observed in our previous experiment supports the hypothesis that the
integration of human faces and voices is sustained by a network of
cerebral regions activated independently of the task to perform or the
cognitive level of processing (gender processing or recognition).
These results raise several new questions that further experiments
will help to answer, notably about the possible specificity of the
observed network for the processing of the human stimuli relative to
other kinds of visuo-auditory associations or the explicit/controlled
vs. implicit/automatic aspects in the integration of highly ecological
social stimuli such as the human faces and voices.
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